회로 이론이란 무엇인가?
수력 발전소에서는 물의 위치 에너지를 전기 에너지로 바꾼다.
화석 연료를 태우거나 원자력 에너지를 이용하여 전기 에너지를 얻는다.
우리는 이 장에서 전류와 전압을 정의하고 저항 회로에서 전류가 흘러, 전압 강하가 어떻게 일어나는지 공부한다. 또 전력과 옴의 법칙에 대해 공부한다.
1.1 전하
모든 물질은 원자로 구성되어 있다. 원자는 그 물질의 특성을 지니는 최소의 입자이다.
원자는 원자핵과 전자로 이루어져 있으며 원자핵은 양성자와 중성자로 이루어져 잇다.
원자핵 주변의 궤도를 도는 전자의 개수는 양성자의 개수와 동일하다. 구리의 예를 들면 원자핵 주변에 첫번째 각에 2개의 전자, 두번째 각에 8개의 전자, 세번째 각에 18개의 전자, 네번째 각에 1개의 전자가 돌고 있다.
이 네번째 각의 전자를 특히 자유 전자라고 한다. 그림1.1은 구리 원자의 구조이다.
최외각 궤도의 자유 전자는 원자핵에 의한 구속력이 약하기 때문에 적은 에너지로 궤도에서 떼어 낼 수가 있다.
구리에는 1cm^3의 부피에 상온에서 약 8x10^22개의 자유전자가 있다.
전기 회로의 동작과 특성을 설명하는 가장 기본적인 양을 전하라 한다.
전하에는 양성자와 양이온이 갖는 양전하와 전자와 음이온이 갖는 음전하가 있다.
전자 1개가 갖고있는 전하량은 더 이상 쪼갤수 없는 최소량이다.
전자와 양성자 한개의 전하량은 각각 1.602x10^-19 쿨롬이다 따라서, 6.24x 10^18개의 전자가 모여야 1쿨롬의 전하량이 된다.
쿨롬은 전하의 단위로 si단위계이다.
1.2 전류
전기 회로에서 에너지의 전송이 있으려면 전하의 이동이 있어야 한다.
즉 전하의 이동이 전류이다. 전기 회로에서 도체로 가장 많이 쓰이는 구리 도체를 예로 든다. 구리 도체는 구리 원자 덩어리이며 구리 원자는 원자핵과 원자핵 주위 궤도를 도는 전자로 구성되어 있다.
구리 도체 내에서 전하가 이동한다는 것은 자유 전자가 이동한다는 것을 의미한다. 따라서 전류는 자유 전자의 이동이다.
그림1.2에서 구리 도체의 단면 a에 1초동안 1쿨룸의 자유전자가 이동할때 암페어의 전류가 흐른다고 한다. 지금 t동안 q의 자유전자가 이동하면 이때 흐르는 전류의 세기 i는 q/t이다.
그런데 전기 에너지 이외의 다른 에너지는 에너지가 높은 곳에서 낮은 곳으로 흐른다. 따라서 전기 에너지도 높은 전기 에너지에서 낮은 전기 에너지 쪽으로 전류가 흐른다고 생각하여 +극에서 -극으로 전류가 흐른다고 과거에는 생각했다. 이러한 방법으로 전기공학의 모든 법칙과 정리가 정의되었다. 따라서 (실제로는 다르지만) 이 교제에는 전류는 +극에서 0극을 흐른다고 생각한다.
1.3 전압
자동차는 휘발유를 태워서 움직인다. 물은 높이의 차, 즉 수위차에 의해 낮은 곳으로 흐른다. 마찬가지로 전기회로에서 전하가 두점 사이를 이동하려면 전위차가 있어야한다.
+1c의 전하가 점 a에서 점b로 움직일때 외부에 1j의 일을 할 경우 점 a는 점b보다 전압이 1v높다고 한다. 따라서 점 a에서 점b로 q의 전하가 이동하여 w의 일을 햇다면 점 a와 점 b 사이의 전위차는 v=w/q이다.
전위차를 대지의 기준으로 할때는 특히 전위라고 한다. 대지의 전위는 영볼트이다. 전기 회로에서 전위차를 발생시키는 장치를 전압원이라고 하고 여기에는 축전지 직류전원 공급 장치(d.c), 태양 전지, 직류 발전긷 등이 있다. 전압원의 기호는 그림 1.5와 같이 +극성을 가늘고 길게 -극성을 굵고 짧게 그린다.
1.4 저항
어떤 물질의 두점 사이에 전위차가 있으면 그 물질 내에는 자유 전자의 이동이 일어난다. 아주 작은 전압으로도 자유 전자의 이동이 일어나는 자유 전자의 이동이 일어나는 물질을 도체라 하고 자유 전자가 없어 자유 전자의 이동이 거의 없는 물질을 부도체 또는 절연체라 하며 도체와 부도체의 중간 정도 특성을 가지는 물질을 반도체라 한다.
도체에는 금,은,동,알루미늄 등이 있으며 부도체에는 유리, 에보나이트 등잉 ㅣㅆ고 반도체에는 게르마늄, 실리콘등이있다.
도체에 전류가 흐를 때 자유 전자는 원자 또는 다른 전자와의 충돌이 일어난다. 이때 열에너지가 발생하며 자유 전자의 이동이 방해를 받는다. 이를 저항이라고 한다. 물리적인 특성이 저항을 나타내는 구체적인 물체를 저항기라 한다.
저항의 si단위는 옴을 사용하며 그림 1.8곽 ㅏㅌ이 표시한다. 저항의 역수를 컨덕턴스라 하고, g로 표시하며 단위는 지멘스를 사용한다.
따라서 컨덕턴스가 크다는것은 전류가 흐르기 용이하다는 뜻이다.
1.5 전력
그림 1.10은 건전지에 꼬마 전구를 연결한 것이다. 건전지에서는 화학 에너지가 전기 에너지로 바뀌어 도체를 따라 에너지가 전송된다. 전송된 전기 에너지는 전구에서 열에너지와 빛에너지로 바뀐다.
이와 같이 전기회로에서 1초 동안 전송되거나 변환되는 에너지를 전력이라 한다.
지금 전구에서 t초동안 w줄의 에너지가 빛과 열로 변환되었다면 전구의 전력p는 p=w/t
p=v x i
라는 중요한 식을 얻는다.그림 1.10의 실제 배선도를 전기 회로도로 그리면 그림 1.11과 같이 그릴수있다.
건전지는 6v를 발생하여 그림과 같은 방향으로 전류가 흘러 전구에서 빛과 열로 소비되었다.
즉 전구에서는 6v의 전압 강하가 발생하였다. 건전지에서는 6v의 전압 상승이 발생했다고 한다.
바꾸어 말해 전압 상승은 전류가 +극성에서 흘러 나와 -극성으로 흘러 들어갔고 전압 강하는 전류가 +극성으로 흘러들어가 -극성으로 흘러나갔다.
1.6 옴의 법칙
전기회로를 해석하는데 쓰이는 기본적인 법칙이 옴의 법칙이다. 옴의 법칙은 저항기에 전압원을 연결할 때 흐르는 전류와 가한 전압 및 저항과의 관계를 말하고 있다. 전압을 두배로 증가시키면 흐르는 전류가 두배로 증가하고 절반으로 감소시키면 전류도 절반으로 감소한다. 즉 그림 1.12에서 저항에 전압을 가하면 흐르는 전류는 전압에 비례{하고 저항에 반비례한다. 이를 옴의 법칙이라 하고 수식으로 표시하면 i=gv가 된다.
2. 직렬 회로와 병렬회로
저항기를 연결하는 가장 간단한 방법으로 직렬 연결과 병렬 연결이 있다. 이번 장에서는 직렬회로,병렬 회로를 공부한다. 키르히호프의 전압,전류 법칙이 회로에 어떻게 사용되었는지를 공부한다. 끝으로 전원의 특성과 직병렬 회로가 아닌 간단한 회로를 공부한다. 이 장을 성공적으로 끝마친 학생은 간단한 저항 회로를 해석하고 또 원하는 특성을 지닌 회로를 설계할수있다.
2.1 직렬회로
그림 2.1은 3개의 꼬마전구를 도선으로 직렬연결한 것이다. 각 전구의 저항을 r123라 할때 회로도를 그리면 그림2.2와 같은 모양이 된다.전원의 +단자에서 흘러 나온 전류는 r1과 r2와 r3를 지나 전원의 -단자로 흘러들어간다. 즉 전류가 흐르는 통로는 단 한개 뿐이다. 이와 같은 회로를 직렬 회로라 한다.
2.1.1 키르히호프의 전압 법칙 그림2.2와 같이 회로가 열려 있지 않고 완전히 닫혀진 회로를 폐회로 라 한다. 한 폐회로 내에서는 전압 상승과 전압 강하의 대수합은 영이다. 이를 키르히호프의 전압 법칙이라 한다.
그림 2.3에서 회로에 전류 i가 흘러 각 저항의 전압 강하를 v1,v2,v3라 하면 vs-v1-v2-v3=0가 된다.
여기서 전압 상승을 +,전압 강하를 -로 취했다.
식(2.1)을 일반화하면 다음과 같이 된다.
그림2.3에서 키르히호프의 전압법칙을 이용하여 직렬 회로의 합성 저항 rt를 구해본다. 옴의 법칙에서 각 저하으이 전압 강하 v1,v2,v3는 v1=r1i , v2=r2i,v3=r3i이다. 이들을 식(2.1)에 대입하면 식=0가 된다.
따라서 즉, 직렬 회로의 총합성 저항은 각 저항의 합과 같다.
2.1.3 직렬회로의 응용
1) 전류계
그림 2.15에서 a는 전류의 크기를 측정해주는 전류계이다. ra는 전류계 자체내에 존재하는 내부저항을 의미한다. 부하저항 rl에 흐르는 전류를 측정하려면 그림과 같이 rl에 전류계를 직렬 연결한다.
2) 전동기의 가동 그림2.16은 직류 전동기를 기동시킬 때 저항이 직렬로 연결됨을 보여준다. 기동을 처음 시작할때 핸들 h를 단자 1 에 연결하여 최소 전류를 흐르게한다. 그 후 천천히 다음 단자로 이동시켜 단자6이 되면 전동기는 기동이 끝나고 정상적인 운전(회전)이 되는 것이다. m은 전동기 본체를 듯하고 f는 계자 코일을 의미한다.